A mass and momentum flux-form high-order discontinuous Galerkin shallow water model on the cubed-sphere
نویسندگان
چکیده
Article history: Received 20 May 2013 Received in revised form 17 October 2013 Accepted 24 November 2013 Available online 12 December 2013
منابع مشابه
A Discontinuous Galerkin Global Shallow Water Model
A discontinuous Galerkin shallow water model on the cubed sphere is developed, thereby extending the transport scheme developed by Nair et al. The continuous flux form nonlinear shallow water equations in curvilinear coordinates are employed. The spatial discretization employs a modal basis set consisting of Legendre polynomials. Fluxes along the element boundaries (internal interfaces) are app...
متن کاملDevelopment of a Scalable Global Discontinuous Galerkin Atmospheric Model
An efficient and scalable global discontinuous Galerkin atmospheric model (DGAM) on the sphere is developed. The continuous flux form of the nonlinear shallow water equations on the cubed-sphere (in curvilinear coordinates) are developed. Spatial discretization is a nodal basis set of Legendre polynomials. Fluxes along internal element interfaces are approximated by a Lax-Friedrichs scheme. A t...
متن کاملQuadrature-Free Implementation of a Discontinuous Galerkin Global Shallow-Water Model via Flux Correction Procedure
The discontinuous Galerkin (DG) discretization relies on an integral (weak) formulation of the hyperbolic conservation law, which leads to the evaluation of several surface and line integrals for multidimensional problems. An alternative formulation of the DG method is possible under the flux reconstruction (FR) framework, where the equations are solved in differential form and the discretizati...
متن کاملA discontinuous Galerkin method for the shallow water equations in spherical triangular coordinates
A global model of the atmosphere is presented governed by the shallow water equations and discretized by a Runge–Kutta discontinuous Galerkin method on an unstructured triangular grid. The shallow water equations on the sphere, a two-dimensional surface in R, are locally represented in terms of spherical triangular coordinates, the appropriate local coordinate mappings on triangles. On every tr...
متن کاملA Discontiuous Galerkin Method for the Shallow Water Equations in Spherical Triangular Coordinates
A global barotropic model of the atmosphere is presented governed by the shallow water equations and discretized by a Runge-Kutta discontinuous Galerkin method on an unstructured triangular grid. The shallow water equations on the sphere, a two-dimensional surface in R, are locally represented in terms of spherical triangular coordinates, the appropriate local coordinate mappings on triangles. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 271 شماره
صفحات -
تاریخ انتشار 2014